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Abstract. OMG’s SPEM standard allows for a detailed modeling of
software development processes and methods, but only a rather coarse
description of their behavior. This gap can be filled by extending SPEM
with a fine-grained behavior modeling concept based on UML activities
and state machines. In order to gain full benefit from detailed software
process models including behavior, an automated enactment of these
software process models is required.

In theory, the operational semantics of UML activities as defined by
OMG’s FUML (Semantics of a Foundational Subset for Executable UML
Models) could be used to instantiate and sequentially simulate software
process models on a single computer. However, FUML is insufficient to
execute software process models to drive realistic projects with large and
geographically spread teams. FUML lacks support for distributed execu-
tion in order to guide and support team members with their concurrent
activities. FUML also does not fulfill key requirements of software pro-
cesses, in particular requests for human interaction. Additionally, FUML
requires explicit modeling of auxiliary user specific attributes and behav-
ior of model elements, which is a cumbersome, repetitive and error-prone
task and leads to non-reusable standard software process models.

We present the required FUML extensions to support distributed execu-
tion, human interaction, and to weave in user specific extensions of the
execution machine. With these FUML extensions it becomes feasible to
enact reusable standard software process models in realistic projects.

1 Introduction

Software development processes (SDPs) are widely accepted as a critical factor
in the efficient development of complex and high-quality software and systems.
Beginning with Osterweil’s process programming [1] many process modeling lan-
guages (PML) have been proposed to describe SDPs in more or less abstract,
(semi-)formal ways, see [2–4] for an overview. Some of those PMLs are standard-
ized, for example, SEMDM [5] and SPEM [6]. In contrast to SEMDM, SPEM



is based on the UML Infrastructure [7] and defines a graphical notation. Its fa-
miliar high-level notation allows practitioners to pick up SPEM easily. However,
SPEM has been primarily designed to model and document the static structure
of SDPs. Thus, when an SDP is modeled in detail with SPEM this results in
a thorough documentation of the process. Such a well documented process is
valuable or may even be required (e.g., in safety critical projects), but it does
not provide much additional value for the project staff that uses the process
documentation as there is no help in executing the process. Although it has
been a requirement, executability is not in the scope of the current version 2.0
of SPEM, even though it would provide additional benefits (see [1, 8, 9]):

– Executable software process models can be simulated and thus more easily
validated before using them in a project.

– A process execution machine (PEX) can guide and support the project staff.
– Since a PEX can automatically check conformance of the executed process

with the modeled process, it can detect and prevent process violations.
– A PEX can track progress of the executed process. This is of great use for

process audits, because proofing conformity of the actually executed process
with the modeled process can be partially automated.

In [10] we presented eSPEM, a SPEM extension based on UML activities and
state machines [11]. Beside the UML behavior modeling concepts (for example,
decisions, exceptions, and events), eSPEM provides additional behavior modeling
concepts that are specific to SDPs (e.g., task scheduling). The behavior modeling
concepts in eSPEM can be used to describe the behavior of SDPs in a fine-
grained, formal, but intuitive way. The formality of the SDP behavior description
is required in order to execute it. Another requisite to execute an SDP is the
definition of the operational semantics of the PML used to describe an SDP.

An approach to define the operational semantics of a subset of UML activities
and actions is provided by the OMG standard Semantics of a Foundational
Subset for Executable UML Models (FUML) [12]. FUML provides a mapping
of UML activities and actions to Java and can instantiate and simulate UML
models. However, the Java implementation is limited to a single thread in a single
Java virtual machine (JVM). Consequently, FUML can be used to instantiate
and locally simulate SDPs modeled in PMLs based on UML, for example eSPEM.
We have verified this by implementing a simulator based on the operational
semantics of the concepts we reused from UML (for example, DecisionNode,
ForkNode, and Action), as well as the semantics of the additional behavior
modeling concepts in eSPEM, like task scheduling.

While suitable for local simulation, a FUML-based implementation is in-
sufficient to support distributed process execution needed for typical software
projects that are driven by teams. In such projects, each team member has a
personal workstation and is connected to a network. To be useful in such a
distributed environment [13, 2], a FUML-based execution machine for software
processes must be able to:

– share the state of a running software process instance across several nodes
in a network (R1),



– suspend and resume execution on different nodes (R2),
– interact with project staff (R3), and
– adapt to the needs of different teams in different organizations (R4).

However, FUML does not meet these requirements, because it was not de-
signed for a distributed execution environment or to interact with humans. We
discuss the problems that prevent a distributed execution in detail in Sect. 2.
Section 3 presents our solutions for the insufficiencies found in FUML in order
to meet all the above requirements. Sect. 4 evaluates our solutions with an ex-
emplary SDP. In Sect. 5, we compare our execution machine to other existing
approaches, before we conclude and give a brief outlook on the further steps.

2 FUML Architecture

To understand the problems that prevent a distributed execution using FUML,
we start with a brief overview of FUML’s architecture. FUML defines a UML
model named execution model, that acts as a type model for models that store
information about a running instance of an executed UML model. Figure 1 shows
a small excerpt of FUML’s execution model. The elements in the execution model
(e.g., operations) are annotated with their respective Java codes. A Java-based
execution machine can be generated from this annotated execution model.

instantiate(type : UML::Class) : Object

Locus

activate(nodes : ActivityNode [0..*], 

edges : ActivityEdge [0..*])

ActivityNodeActivationGroup

receiveOffer()

fire(incomingTokens : Token [0..*])

ActivityNodeActivation

0..* nodeActivations

Token

0..* heldTokens

execute()

ActivityExecution

1

activationGroup Object

ExtensionalValue

Execution

Java implementation of this operation:
Activity activity = 

(Activity)(this.getTypes().getValue(0));

this.activationGroup = new 

ActivityNodeActivationGroup();

this.activationGroup.activate(activity.node, 

activity.edge);

...

sendOffer(tokens : Token [0..*])

ActivityEdgeInstance

0..* edgeInstances

target

source1

1

0..*

extensionalValues

Fig. 1. Excerpt of FUML’s execution model

In the FUML execution model, a Locus is responsible for instantiating classes
from the executed UML model and for holding the instantiated Objects. FUML
uses the visitor design pattern [14] to add operations (that define the operational
semantics) to classes in the UML meta model. A visitor class (for example, those



named *Execution, and *Activation) exists for each supported UML concept.
An ActivityExecution represents a single execution of a UML::Activity (e.g.,
the behavior of a UML::Class from the executed UML model). An Activity-

NodeActivation represents an execution of a UML::ActivityNode. Specializa-
tions of the abstract class ActivityNodeActivation exist in FUML for the
different types of ActivityNodes in UML (e.g., DecisionNode, and Action).

Since UML activity diagrams are based on Colored Petri nets [15, 11], FUML
makes use of the essential Petri net concepts like places, transitions, and to-
kens. ActivityNodeActivations are the places and can hold different types
of Tokens. ActivityEdgeInstances offer these Tokens from their source to
their target ActivityNodeActivation. ActivityEdgeInstances act as Petri
net transitions.

Besides the problem that FUML’s implementation does not provide remote
access to the execution model, there are two further issues that prevent a dis-
tributed execution. First, since access to the FUML execution model instance is
not protected by any locking or synchronization mechanism, the existing Java-
based implementation must fail in a distributed and concurrent environment due
to data corruption (P1). Second, FUML uses synchronous, sequential operation
calls to propagate tokens [16]. Thus, the state of the running model instance
is spread across the call stack of the machine (e.g., a JVM) that executes the
FUML implementation, and the corresponding instance of FUML’s execution
model (P2). This contradicts traditional Petri net semantics, where the state of
the Petri net is solely defined by the number of tokens in each place. Fig. 2 shows
an example of a small UML activity diagram and the required interactions of the
execution model objects (some omissions are made for better readability). Each
of the non-UML arrows from the untyped lifelines towards nodes and edges of
the activity diagram denotes the UML element that corresponds to an untyped
lifeline.

: ActivityNodeActivationGroup

A B

: :: : : ::

receiveOffer

sendOffer
receiveOffer

sendOffer
receiveOffer

sendOffer
receiveOffer

activate

sd

Fig. 2. Activity diagram and behavior realization in FUML

A call of receiveOffer transfers tokens from one node to another. Using
this design to suspend (after action A) and to resume execution later (at the



workstation of another team member) requires to preserve the call stack. Another
problem is that large activity diagrams or activity diagrams with cycles may lead
to an overflowing stack due to the recursive receiveOffer calls.

3 Distributed Execution Machine Architecture

This section presents our solutions to the two above mentioned FUML problems
that prevent a distributed execution, and it discusses FUML extensions to meet
all of the requirements for a PEX.

3.1 Shared Access to the Execution Model

To fulfill requirement R1 (shared execution model access), we use the Connected
Data Objects (CDO) model repository [17] to manage our execution model in-
stance. As part of the Eclipse Modeling Framework (EMF) [18], CDO provides
transparent access to a shared model in a network, as well as transactions for
safe model manipulations in distributed environments. With CDO we can share
the state of a running software process instance in a network.

3.2 Synchronized Access to the Execution Model

Transactions are a precondition to solve the FUML problem P1 (synchronized
execution model access) in the Java-based implementation. However, their use
requires changes to the operational semantics of FUML, because some of the
essential Petri net properties [15] need to be respected. First, it must be an
atomic operation to fire a transition (to transfer a number of tokens from the
source node(s) to the target node(s)). Second, different transitions may fire con-
currently.

To reflect these properties, we use CDO transactions to isolate firing of single
ActivityEdges (transitions). This includes the receiveOffer call to the target
ActivityNodeActivation, which in turn includes execution of the behavior of
the target node. Thus, moving tokens from one ActivityNodeActivation to
another is now an atomic operation on an execution model instance. This solves
the FUML problem P1 (synchronized execution model access).

To solve the problem P2 (the execution state spread across the call stack and
the execution model), we substitute FUML’s synchronous, sequential receive-
Offer calls (see Fig. 2) with asynchronous calls performing basic Petri net op-
erations. This can be done, because the state of a Petri net is solely defined by
the number of tokens in each place. The information stored on the call stack is
redundant.

Instead of the preceding receiveOffer calls, our implementation triggers
the firing of transitions by means of system events (different from events mod-
eled in an SDP). Examples are user inputs, time events, and CDO events upon
manipulation of the execution model instance. Depending on the type of event,
the execution machine checks for transitions that can fire, and then fires them



in a single transaction. Figure 3 shows how a model changed event is handled,
if A holds one token and the edge towards B is ready to fire.

: SessionListenersd

model changed

: Executor

startTransaction

commitTransaction

run

A B

b :: ActivityNodeActivationGroup

step

e :

findEdgesWithOffers : [e]

getTarget : b

receiveOffer

… triggers a further model changed 

event, which can be handled by any 

SessionListener on any node.

Fig. 3. Activity diagram and behavior realization in eSPEM

Many CDO transactions can manipulate the execution model instance con-
currently, if there are different source and target nodes (places) involved. If the
same source or target node is involved, it is guaranteed that at most one trans-
action can be committed. The other transactions are rolled back. This ensures
a correct number of tokens on each place.

With these changes to FUML, we fix both problems and make the execution
machine useful in distributed and concurrent environments. By using system
events to trigger the firing of ActivityEdges, we also fulfilled requirement R2
(suspending and resuming execution on different (network) nodes), because these
system events can be handled by any node in the network. After an event is
handled, the node automatically suspends execution.

3.3 Human Interaction

To meet requirement R3 (human interaction), FUML has to be extended. This
is due to a different focus of UML activities and actions, which are normally
used to transform inputs into outputs, and must be modeled completely in order
to be executable. In contrast to that, one of the essential properties of software
processes is a usually incomplete formal description of their behavior. A process
designer stops modeling the behavior of activities and tasks at some level of
granularity. Instead, the process designer uses either natural language to describe
the activities and tasks, or simply assumes that the project staff knows what to



do in the course of the activities and tasks. In order to execute a software process
modeled in that way, a tight interaction between the PEX and the project staff
is required [1, 19]. That is, the PEX is responsible to support the project staff
by planning and controlling their work according to the behavior model. In
opposition to the PEX, the project staff carries out the actual creative work of a
software process. To support this scenario, a PEX must be able to pass control of
the software process execution over to project staff and take back control when
they are finished with their tasks. However, this is out of FUML’s scope.

To gain support for interaction with project staff that also fits into our dis-
tributed execution concept, we added to FUML an abstract class Request and
some specializations of this class (see Fig. 4).

Locus

isFulfilled() : Boolean

Request

requestPool0..*

DecisionRequest

suspend(r : Request)

resume(r : Request)

ActivityNodeActivationsource

0..1

Value

0..1 result

ObtainObjectReferenceRequest

Object

Classifier (from eSPEM)

0..1

ExecutionRequest

ParameterValue

0..*inputParameterValuesclassifier

0..1 result target0..1

Fig. 4. Requests in our Execution Model

Execution may be suspended at any ActivityNodeActivation. Suspending
adds a pending Request to the requestPool of the Locus that (transitively) con-
tains the ActivityNodeActivation. The project staff handles these Requests
by editing their properties through the graphical user interface of the PEX.
Editing Requests is secured by CDO transactions and thus can take place con-
currently on any of the workstations. Once a Request is fulfilled, it is removed
from the Locus and execution resumes at the ActivityNodeActivation that is
the source of the Request. Let us discuss the three subtypes of Requests now.

A DecisionRequest is used whenever no input value for the corresponding
DecisionNode can be determined automatically. For example, a Role can be
modeled [10] to choose the value for a DecisionNode as shown in Fig. 5 with one
of the UML behavior modeling extensions available in eSPEM. At runtime, the
PEX can offer these decisions to the ProductOwner who can choose a Value (the
string Yes) as response to the DecisionRequest (see Fig. 5) through the context
menu of our PEX. The PEX then selects the outgoing edge of the DecisionNode.

An ObtainObjectReferenceRequest is used whenever an Object (e.g., an
instance of a Task or a WorkProduct) is required as input for an Action but
cannot be determined automatically. This is a quite common case when tasks are



Release Product?

[Yes]

[No]

RoleUse

Product Owner decides ►

Release Product?

... ...

...

Fig. 5. Decision Modeled with eSPEM and DecisionRequest at Runtime

planned in advance and are dynamically selected for later execution. A project
member may select an appropriate object (e.g., a pre-planned Task) that con-
forms to the classifier. The PEX then uses the selected object as an input to
perform the Action.

An ExecutionRequest is used whenever an ExecuteWorkAction is invoked
and the WorkDefinition that shall be executed has no behavior modeled. In
this case control over the execution of the target WorkDefinition is passed to
the project staff. When the staff marks the WorkDefinition as finished, control
is passed back to the PEX.

With these extensions of FUML, we meet requirement R3: interaction with
project staff. Requests also work in the distributed environment when handling
them in CDO transactions.

3.4 Instantiation

A reasonable PEX must manage a lot of master data (for example, time spent
on a task). In order to adapt to the needs of different teams and organizations
(requirement R4), this data must be customizable. For example, one organization
might use a PEX to track the time spent on tasks. Another organization may
use a separate time-tracking software. Thus, it must be customizable whether
all tasks have an attribute timeSpent and automatically track the time, or not.
FUML’s generic instantiation mechanism cannot fulfill this requirement, because
it only works with attributes modeled in the instantiated model. To understand
the problem, we discuss FUML’s instantiation in more detail below.

Software modeling and execution using (F)UML, as well as software process
modeling and execution, are engineering domains that make use of several levels
of (ontological) classification [20]. For an example see Fig. 6.

The model representing the language definition (UML meta model) is an on-
tological type model for system models. In the same manner, a system model is
an ontological type model for models that form the state of running system (in-
stance models). To gain support for the three levels of ontological classification,
FUML uses an orthogonal dimension of classification (linguistic classification) as
proposed by the orthogonal classification architecture (OCA) [21]. Fig. 6 shows
these orthogonal dimensions. FUML uses the prototypical concept pattern [20]
to implicitly weave-in the class Object during linguistic instantiation. Therefore,
Object implicitly is the base class of all classes modeled in the system model.



Instance modelSystem modelLanguage (UML)

Class Person John W.
«ontological»«ontological»

Execution model

Object

«linguistic»

Fig. 6. Classification Levels used in UML/FUML

As a result, all instantiated elements in the instance model share the same base
attributes and behavior of Object. This pattern can also be found in several
object-oriented programming languages like Java or C#. During instantiation,
FUML creates slots to hold the additional attribute values as modeled in the
system model. However, there is no way to customize the base attributes and be-
havior of Object in FUML. The only way to do this is to explicitly model these
attributes in the process model for every class (for example, by specializing an
abstract class). This is a cumbersome, repetitive and error-prone task. The same
problem occurs when FUML is used for software process execution. Missing cus-
tomization support also leads to non-reusable standard process models, because
they would be polluted with data specific to an organization or project.

In order to fulfill requirement R4, we add support for customization of base
attributes and behavior. We create an extensible type model for the master data
called runtime model, which is an extension of FUML’s execution model. The
users of the PEX can optionally extend the runtime model with a type model
(runtime model extension). Figure 7 shows the runtime model (extension) in
eSPEM’s classification hierarchy.

Our runtime model provides the base attributes and behavior of the instan-
tiable language constructs in eSPEM for example TaskDefinition and Work-

Product. These attributes are required by our PEX in order to work properly.
In contrast to FUML, elements from the process model are not (ontologically)
instantiated by instantiating a generic class (Object) from the execution model.
Instead, when executing a process model, a type model called process runtime
model is created on-the-fly by a configurable model-to-model (M2M) transforma-
tion. During this transformation, classes from our runtime model (or a runtime
model extension) are woven-in as base classes for the classes from the process
runtime model. The used base class from the runtime model (extension) is deter-
mined by the type of the corresponding process model element and the config-
uration of the transformation. For example, BaseTaskInstance (or BaseTask-

InstanceExt) is configured as base class for all instances of TaskDefinition.
Therefore, these instances share all the attributes and the behavior inherited
from BaseTaskInstance (or BaseTaskInstanceExt). The behavior of the base
classes can be implemented by the users of the PEX, for example, using a pro-
gramming language. We use EMF models for linguistic instantiation. Thus, ad-
ditional behavior of classes in a runtime model extension can be added by im-
plementing methods in the EMF-generated Java code. For convenience, the Java
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Fig. 7. Classification Levels used in eSPEM

code generated for a process runtime model is transparently distributed to all
workstations.

With the concept presented in this section, we fulfill requirement R4: support
for customization of base attributes and behavior. By weaving-in customizations
contained in a runtime model extension as an aspect, there is no need to pollute
SDP models with this data. Therefore, standard software process models can be
easily reused by different teams and organizations.

4 Evaluation

To test our FUML-based implementation of eSPEM’s operational semantics, we
have implemented a test suite. Each test in this suite uses a small process model
to test a specific language construct, for example, DecisionNode, ForkNode, or
ExecuteActivityAction. In addition to the functional test, we also test some
non-functional properties like maximum execution time.

4.1 Exemplary SDP

In addition to these tests that focus on functionality of individual language
constructs, we have evaluated our PEX by executing an exemplary SDP in a
controlled environment. The used SDP is based on Scrum [22] with changes to
simplify automated testing. Scrum is an iterative incremental SDP. An iteration
usually takes 4 weeks and is called sprint. At the beginning of each sprint, the
features are selected that form the product increment developed in that sprint.
Then, activities are planned to implement these features. Figure 8 shows the



behavior of Implement Feature (with its sub-tasks) used to implement one fea-
ture. The rest of the exemplary SDP consists of an infinite loop that instantiates
and executes several Implement Feature activities.

Exec: Understand Requirements

Exec: Test

Exec: Code

Complete?

[No]
[Yes]

RoleUse

Team

◄ decides

Implement Feature

Fig. 8. Behavior of Implement Feature in the Exemplary SDP

4.2 Test Setup

Our test setup consists of 6 PCs connected by a local network. One PC acts as
the server for the execution model instance and the execution machine. The other
5 PCs act as clients and simulate human interaction with the execution machine
by answering Requests. Tests are performed with 1, 2, 3, 10, and 20 execution
machine clients running simultaneously on each of the 5 client PCs to simu-
late different project sizes. We measure the execution time of each transaction
on the execution model instance. The benchmark considers five different types
of transactions. Server: The transactions that isolate the firing of transitions.
These transactions are usually faster, because the execution machine is running
within the same JVM as the execution model instance server (local loopback).
Planning: These transactions isolate instantiation of Implement Feature activ-
ities on a client. Understand transactions isolate execution of an Understand

Requirements task by a client. In the same way, Test and Code isolate exe-
cution of Test and Code tasks. The decision whether a feature is completely
implemented or not, is isolated by Finished transactions. The average execution
time for these transactions with 5, 10, 15, 50, and 100 execution machine clients
concurrently working on the execution model instance, is shown in Fig. 9.

Our tests show that execution time of typical transactions is below 100 ms.
Hence, we consider this a sufficient response time for human interaction, even if
the PEX is under high load with connections from many clients. These clients
are running automated tests that handle requests within a second. In contrast,
humans are considered to have a few interactions per hour with a PEX.

5 Related Work

Many authors have identified executability as highly relevant for (software) pro-
cess modeling. Although first descriptions of software processes with process
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programming languages were executable [1] (some even supported distributed
execution; see [2]), they had limited impact in industry due to their complex for-
malisms or low level of abstraction [13]. Therefore, below we focus on approaches
that are based on standardized high-level modeling languages.

BPMN [23] or WS-BPEL [24] and its extension for People [25] were created
to model and execute business processes. Although they provide a reasonable
behavior modeling and execution concept, they do not provide essential con-
cepts from SDPs, like roles, guidelines, responsibility assignments, and tools.
These concepts have to be modeled by means of BPEL variables or cannot be
modeled at all [19]. Thus, SDP descriptions with business process languages are
incomplete and limit the support a PEX can provide when executing them.

Bendraou et al. [26] present xSPEM and focus on SDP validation with timed
Petri nets. xSPEM also adds events for SPEM activities but lacks a fine-grained
behavior modeling approach with decisions and task scheduling. Furthermore,
no tool is provided to support direct execution of xSPEM-based models.

Seidita et al. [27] extend SPEM to support the modeling of agent oriented
methodologies [28] but do not focus on executability.

UML4SPM [29] extends SPEM 1.1 with UML 2.0 behavior modeling con-
cepts. There are two ways to make UML4SPM-based models executable. First,
UML4SPM is mapped to WS-BPEL for enactment support [19]. As mentioned
above, business processes lack some of the essential concepts of software pro-
cesses, for example, roles, and guidelines. Moreover, the language WS-BPEL
does not support human interaction during execution. Second, the operational
semantics of UML4SPM is defined based on FUML. In [30], FUML’s execution
model concept is woven into UML4SPM using Kermeta [31]. Another imple-
mentation of UML4SPM based on FUML and Java is presented in [9]. Both im-
plementations allow for a direct simulation and execution of UML4SPM-based
process models, but they lack distributed execution support.

Di Nitto et al. [32] model SDP’s with a UML 1.3-based framework. They
do not use a dedicated meta model for language definition, but rather use plain
UML. The proposed framework elements (e.g., Activity) are all instances of



the UML meta class Class. SDPs are modeled by specializing the framework
elements. This approach achieves executability by generating Java code from
the diagrams (Class, Activity, and State Machine diagrams) used to describe
an SDP. However, it remains vague how essential aspects of software processes
(for example, precedence of activities) are translated. Another major drawback
is the lack of a real modeling language definition. The sole use of UML classes
may also confuse process modelers because all model elements have the same
notation and semantics.

Chou [33] uses a subset of UML 1.4 activity and class diagrams to model
SDPs graphically. He proposes a supplemental low-level object-oriented process
programming language to execute SDPs. However, the executable code must be
manually derived from the diagrams.

Besides SPEM, there is another standardized meta model driven approach
for describing development methodologies: the ISO/IEC standard SEMDM [5].
However, SEMDM lacks a fine-grained behavior modeling concept and no exe-
cution support is currently provided.

Engels et al. [34] show how plain UML 2.0 can be used for process modeling.
However, since essential concepts of SDP modeling are missing in UML (e.g.,
work products and responsibility assignments) the resulting SDPs are incomplete
and imprecise so that support by a PEX must be limited.

Other approaches use UML and extensions through stereotypes for SDP mod-
eling, for example [35] and the SPEM standard [6] itself, which also defines a
UML profile. This allows to use behavior modeling concepts from UML with
standard UML tools for modeling SDPs. Additionally, at least parts of the mod-
els could be executed using FUML. However, all of these approaches suffer from
the fact that stereotypes change the semantics of the UML elements they are ap-
plied to but have no influence on the language structure as defined by the UML
meta model. This results in two drawbacks: First, the SDP modeling language
structure has to be re-implemented, for example, as constraints for the stereo-
types. Second, the operational semantics of the stereotypes has to be defined
and integrated with FUML in order to provide reasonable execution support. As
outlined above, FUML also has a different focus and does not provide essential
concepts like human interaction.

Benyahia et al. [16] extend FUML to reflect additional requirements on the
execution semantics for real-time systems (e.g., scheduling, and concurrency).
The authors highlight similar problems with FUML’s Java mapping using syn-
chronous, sequential method calls for token and event propagation. They intro-
duce the class Scheduler in the execution model that is responsible to dispatch
actions and therefore break the strictly sequential execution in FUML. However,
they do not support distributed execution.

Regarding instantiation, several other approaches exist that enable multi-
level modeling. Atkinson and Kühne discuss some of them in [21]. We briefly
discuss the two most prominent of them below.

The powertype pattern [36] (used by SEMDM [5, 37]) uses a special rela-
tionship between two classes (powertype and partitioned type). The powertype



instantiates objects that form the process model. In conjunction with a special-
ization of the partitioned type, these objects form a so called clabject. The name
is derived from class and object, because a clabject has both a class facet and
an object facet. Objects at process instance level are instantiated from the class
facet. The powertype pattern still uses one level of instantiation (shallow instan-
tiation), but with generalization relationships crossing the ontological instantia-
tion layers. This violates a strict separation of classification levels as requested
by strict meta modeling [20] and may lead to confusion [38]. FUML and our ap-
proach use an instantiation concept well aligned with orthogonal classification
architecture that also conforms to the rules of strict meta modeling.

Atkinson and Kühne [21, 39] present another approach to multi-level model-
ing called deep instantiation, which allows to annotate elements of type models
(for example, classes and attributes) with a non-negative number called potency.
With each instantiation step, potency is decreased by 1. An element with potency
above 0 can be further instantiated. With potency 0, it behaves like a normal
object or attribute instance. Although this is a generic approach for multi-level
classification, its application to established standards like UML and SPEM is
problematic [40, 41].

6 Conclusion and Future Work

In this paper, we have identified why pure FUML cannot be used to execute
software process models to drive realistic projects with large and distributed
teams. The presented FUML extension supports distributed execution with syn-
chronized access to a shared execution model instance. In addition, it supports
suspending and resuming execution on different nodes, as well as requests to
interact with project staff. Our extension of FUML’s instantiation concept al-
lows organizations and projects to easily weave-in their specific attributes and
behavior in order to tailor the execution machine to their needs. As a result, the
extended FUML can be used to enact reusable standard software process models
in realistic projects.

Our work is also useful for other PMLs based on UML behavior modeling
concepts and for a concurrent execution of UML models in general. With small
modifications of the M2M transformation, our instantiation concept could also
be used to weave-in specific behavior for UML elements with stereotypes and
therefore implement the semantics of the stereotypes.

In the future, we will focus on implementing the operational semantics of
state machines, which are currently missing in both FUML and our FUML-
extension. We also plan to enhance our PEX to integrate existing tools and
their data formats. Another topic of our future work is process evolution: Process
evolution is considered crucial if a model is executed over a long time (duration of
the development project) and the process model or the runtime extension model
has to be changed, for example, due to an error in the process model. Process
evolution should allow for an (semi-)automatic adaptation of the process instance
model to the changed process model or runtime extension model.
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